SHAPE OPTIMIZATION WITH LARGE MAGNETIC FIELDS IN TWO DIMENSIONS

Vladimir LOTOREICHIK

Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences Řež, Czech Republic lotoreichik@ujf.cas.cz

Abstract

In this talk, we will demonstrate that in the limit of strong magnetic fields, the optimal domains for eigenvalues of magnetic Laplacians tend to exhibit symmetry. We establish several asymptotic bounds on magnetic eigenvalues to support this conclusion. Our main result implies that if, for a bounded simply-connected planar domain, the *n*-th eigenvalue of the magnetic Dirichlet Laplacian with uniform magnetic field is smaller than the corresponding eigenvalue for a disk of the same area, then the Fraenkel asymmetry of that domain tends to zero in the strong magnetic field limit. Comparable results will also be discussed for the magnetic Dirichlet Laplacian on rectangles, as well as the magnetic Dirac operator with infinite mass boundary conditions on smooth domains.

These results are obtained in collaboration with Léo Morin.